log2q.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. /* log2l.c
  2. * Base 2 logarithm, 128-bit long double precision
  3. *
  4. *
  5. *
  6. * SYNOPSIS:
  7. *
  8. * long double x, y, log2l();
  9. *
  10. * y = log2l( x );
  11. *
  12. *
  13. *
  14. * DESCRIPTION:
  15. *
  16. * Returns the base 2 logarithm of x.
  17. *
  18. * The argument is separated into its exponent and fractional
  19. * parts. If the exponent is between -1 and +1, the (natural)
  20. * logarithm of the fraction is approximated by
  21. *
  22. * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
  23. *
  24. * Otherwise, setting z = 2(x-1)/x+1),
  25. *
  26. * log(x) = z + z^3 P(z)/Q(z).
  27. *
  28. *
  29. *
  30. * ACCURACY:
  31. *
  32. * Relative error:
  33. * arithmetic domain # trials peak rms
  34. * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35
  35. * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35
  36. *
  37. * In the tests over the interval exp(+-10000), the logarithms
  38. * of the random arguments were uniformly distributed over
  39. * [-10000, +10000].
  40. *
  41. */
  42. /*
  43. Cephes Math Library Release 2.2: January, 1991
  44. Copyright 1984, 1991 by Stephen L. Moshier
  45. Adapted for glibc November, 2001
  46. This library is free software; you can redistribute it and/or
  47. modify it under the terms of the GNU Lesser General Public
  48. License as published by the Free Software Foundation; either
  49. version 2.1 of the License, or (at your option) any later version.
  50. This library is distributed in the hope that it will be useful,
  51. but WITHOUT ANY WARRANTY; without even the implied warranty of
  52. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  53. Lesser General Public License for more details.
  54. You should have received a copy of the GNU Lesser General Public
  55. License along with this library; if not, see <http://www.gnu.org/licenses/>.
  56. */
  57. #include "quadmath-imp.h"
  58. /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
  59. * 1/sqrt(2) <= x < sqrt(2)
  60. * Theoretical peak relative error = 5.3e-37,
  61. * relative peak error spread = 2.3e-14
  62. */
  63. static const __float128 P[13] =
  64. {
  65. 1.313572404063446165910279910527789794488E4Q,
  66. 7.771154681358524243729929227226708890930E4Q,
  67. 2.014652742082537582487669938141683759923E5Q,
  68. 3.007007295140399532324943111654767187848E5Q,
  69. 2.854829159639697837788887080758954924001E5Q,
  70. 1.797628303815655343403735250238293741397E5Q,
  71. 7.594356839258970405033155585486712125861E4Q,
  72. 2.128857716871515081352991964243375186031E4Q,
  73. 3.824952356185897735160588078446136783779E3Q,
  74. 4.114517881637811823002128927449878962058E2Q,
  75. 2.321125933898420063925789532045674660756E1Q,
  76. 4.998469661968096229986658302195402690910E-1Q,
  77. 1.538612243596254322971797716843006400388E-6Q
  78. };
  79. static const __float128 Q[12] =
  80. {
  81. 3.940717212190338497730839731583397586124E4Q,
  82. 2.626900195321832660448791748036714883242E5Q,
  83. 7.777690340007566932935753241556479363645E5Q,
  84. 1.347518538384329112529391120390701166528E6Q,
  85. 1.514882452993549494932585972882995548426E6Q,
  86. 1.158019977462989115839826904108208787040E6Q,
  87. 6.132189329546557743179177159925690841200E5Q,
  88. 2.248234257620569139969141618556349415120E5Q,
  89. 5.605842085972455027590989944010492125825E4Q,
  90. 9.147150349299596453976674231612674085381E3Q,
  91. 9.104928120962988414618126155557301584078E2Q,
  92. 4.839208193348159620282142911143429644326E1Q
  93. /* 1.000000000000000000000000000000000000000E0L, */
  94. };
  95. /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
  96. * where z = 2(x-1)/(x+1)
  97. * 1/sqrt(2) <= x < sqrt(2)
  98. * Theoretical peak relative error = 1.1e-35,
  99. * relative peak error spread 1.1e-9
  100. */
  101. static const __float128 R[6] =
  102. {
  103. 1.418134209872192732479751274970992665513E5Q,
  104. -8.977257995689735303686582344659576526998E4Q,
  105. 2.048819892795278657810231591630928516206E4Q,
  106. -2.024301798136027039250415126250455056397E3Q,
  107. 8.057002716646055371965756206836056074715E1Q,
  108. -8.828896441624934385266096344596648080902E-1Q
  109. };
  110. static const __float128 S[6] =
  111. {
  112. 1.701761051846631278975701529965589676574E6Q,
  113. -1.332535117259762928288745111081235577029E6Q,
  114. 4.001557694070773974936904547424676279307E5Q,
  115. -5.748542087379434595104154610899551484314E4Q,
  116. 3.998526750980007367835804959888064681098E3Q,
  117. -1.186359407982897997337150403816839480438E2Q
  118. /* 1.000000000000000000000000000000000000000E0L, */
  119. };
  120. static const __float128
  121. /* log2(e) - 1 */
  122. LOG2EA = 4.4269504088896340735992468100189213742664595E-1Q,
  123. /* sqrt(2)/2 */
  124. SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
  125. /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
  126. static __float128
  127. neval (__float128 x, const __float128 *p, int n)
  128. {
  129. __float128 y;
  130. p += n;
  131. y = *p--;
  132. do
  133. {
  134. y = y * x + *p--;
  135. }
  136. while (--n > 0);
  137. return y;
  138. }
  139. /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
  140. static __float128
  141. deval (__float128 x, const __float128 *p, int n)
  142. {
  143. __float128 y;
  144. p += n;
  145. y = x + *p--;
  146. do
  147. {
  148. y = y * x + *p--;
  149. }
  150. while (--n > 0);
  151. return y;
  152. }
  153. __float128
  154. log2q (__float128 x)
  155. {
  156. __float128 z;
  157. __float128 y;
  158. int e;
  159. int64_t hx, lx;
  160. /* Test for domain */
  161. GET_FLT128_WORDS64 (hx, lx, x);
  162. if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
  163. return (-1 / fabsq (x)); /* log2l(+-0)=-inf */
  164. if (hx < 0)
  165. return (x - x) / (x - x);
  166. if (hx >= 0x7fff000000000000LL)
  167. return (x + x);
  168. if (x == 1)
  169. return 0;
  170. /* separate mantissa from exponent */
  171. /* Note, frexp is used so that denormal numbers
  172. * will be handled properly.
  173. */
  174. x = frexpq (x, &e);
  175. /* logarithm using log(x) = z + z**3 P(z)/Q(z),
  176. * where z = 2(x-1)/x+1)
  177. */
  178. if ((e > 2) || (e < -2))
  179. {
  180. if (x < SQRTH)
  181. { /* 2( 2x-1 )/( 2x+1 ) */
  182. e -= 1;
  183. z = x - 0.5Q;
  184. y = 0.5Q * z + 0.5Q;
  185. }
  186. else
  187. { /* 2 (x-1)/(x+1) */
  188. z = x - 0.5Q;
  189. z -= 0.5Q;
  190. y = 0.5Q * x + 0.5Q;
  191. }
  192. x = z / y;
  193. z = x * x;
  194. y = x * (z * neval (z, R, 5) / deval (z, S, 5));
  195. goto done;
  196. }
  197. /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
  198. if (x < SQRTH)
  199. {
  200. e -= 1;
  201. x = 2.0 * x - 1; /* 2x - 1 */
  202. }
  203. else
  204. {
  205. x = x - 1;
  206. }
  207. z = x * x;
  208. y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
  209. y = y - 0.5 * z;
  210. done:
  211. /* Multiply log of fraction by log2(e)
  212. * and base 2 exponent by 1
  213. */
  214. z = y * LOG2EA;
  215. z += x * LOG2EA;
  216. z += y;
  217. z += x;
  218. z += e;
  219. return (z);
  220. }