tsan_rtl_access.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. //===-- tsan_rtl_access.cpp -----------------------------------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file is a part of ThreadSanitizer (TSan), a race detector.
  10. //
  11. // Definitions of memory access and function entry/exit entry points.
  12. //===----------------------------------------------------------------------===//
  13. #include "tsan_rtl.h"
  14. namespace __tsan {
  15. namespace v3 {
  16. ALWAYS_INLINE USED bool TryTraceMemoryAccess(ThreadState *thr, uptr pc,
  17. uptr addr, uptr size,
  18. AccessType typ) {
  19. DCHECK(size == 1 || size == 2 || size == 4 || size == 8);
  20. if (!kCollectHistory)
  21. return true;
  22. EventAccess *ev;
  23. if (UNLIKELY(!TraceAcquire(thr, &ev)))
  24. return false;
  25. u64 size_log = size == 1 ? 0 : size == 2 ? 1 : size == 4 ? 2 : 3;
  26. uptr pc_delta = pc - thr->trace_prev_pc + (1 << (EventAccess::kPCBits - 1));
  27. thr->trace_prev_pc = pc;
  28. if (LIKELY(pc_delta < (1 << EventAccess::kPCBits))) {
  29. ev->is_access = 1;
  30. ev->is_read = !!(typ & kAccessRead);
  31. ev->is_atomic = !!(typ & kAccessAtomic);
  32. ev->size_log = size_log;
  33. ev->pc_delta = pc_delta;
  34. DCHECK_EQ(ev->pc_delta, pc_delta);
  35. ev->addr = CompressAddr(addr);
  36. TraceRelease(thr, ev);
  37. return true;
  38. }
  39. auto *evex = reinterpret_cast<EventAccessExt *>(ev);
  40. evex->is_access = 0;
  41. evex->is_func = 0;
  42. evex->type = EventType::kAccessExt;
  43. evex->is_read = !!(typ & kAccessRead);
  44. evex->is_atomic = !!(typ & kAccessAtomic);
  45. evex->size_log = size_log;
  46. evex->addr = CompressAddr(addr);
  47. evex->pc = pc;
  48. TraceRelease(thr, evex);
  49. return true;
  50. }
  51. ALWAYS_INLINE USED bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc,
  52. uptr addr, uptr size,
  53. AccessType typ) {
  54. if (!kCollectHistory)
  55. return true;
  56. EventAccessRange *ev;
  57. if (UNLIKELY(!TraceAcquire(thr, &ev)))
  58. return false;
  59. thr->trace_prev_pc = pc;
  60. ev->is_access = 0;
  61. ev->is_func = 0;
  62. ev->type = EventType::kAccessRange;
  63. ev->is_read = !!(typ & kAccessRead);
  64. ev->is_free = !!(typ & kAccessFree);
  65. ev->size_lo = size;
  66. ev->pc = CompressAddr(pc);
  67. ev->addr = CompressAddr(addr);
  68. ev->size_hi = size >> EventAccessRange::kSizeLoBits;
  69. TraceRelease(thr, ev);
  70. return true;
  71. }
  72. void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
  73. AccessType typ) {
  74. if (LIKELY(TryTraceMemoryAccessRange(thr, pc, addr, size, typ)))
  75. return;
  76. TraceSwitchPart(thr);
  77. UNUSED bool res = TryTraceMemoryAccessRange(thr, pc, addr, size, typ);
  78. DCHECK(res);
  79. }
  80. void TraceFunc(ThreadState *thr, uptr pc) {
  81. if (LIKELY(TryTraceFunc(thr, pc)))
  82. return;
  83. TraceSwitchPart(thr);
  84. UNUSED bool res = TryTraceFunc(thr, pc);
  85. DCHECK(res);
  86. }
  87. void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
  88. StackID stk) {
  89. DCHECK(type == EventType::kLock || type == EventType::kRLock);
  90. if (!kCollectHistory)
  91. return;
  92. EventLock ev;
  93. ev.is_access = 0;
  94. ev.is_func = 0;
  95. ev.type = type;
  96. ev.pc = CompressAddr(pc);
  97. ev.stack_lo = stk;
  98. ev.stack_hi = stk >> EventLock::kStackIDLoBits;
  99. ev._ = 0;
  100. ev.addr = CompressAddr(addr);
  101. TraceEvent(thr, ev);
  102. }
  103. void TraceMutexUnlock(ThreadState *thr, uptr addr) {
  104. if (!kCollectHistory)
  105. return;
  106. EventUnlock ev;
  107. ev.is_access = 0;
  108. ev.is_func = 0;
  109. ev.type = EventType::kUnlock;
  110. ev._ = 0;
  111. ev.addr = CompressAddr(addr);
  112. TraceEvent(thr, ev);
  113. }
  114. void TraceTime(ThreadState *thr) {
  115. if (!kCollectHistory)
  116. return;
  117. EventTime ev;
  118. ev.is_access = 0;
  119. ev.is_func = 0;
  120. ev.type = EventType::kTime;
  121. ev.sid = static_cast<u64>(thr->sid);
  122. ev.epoch = static_cast<u64>(thr->epoch);
  123. ev._ = 0;
  124. TraceEvent(thr, ev);
  125. }
  126. } // namespace v3
  127. ALWAYS_INLINE
  128. Shadow LoadShadow(u64 *p) {
  129. u64 raw = atomic_load((atomic_uint64_t *)p, memory_order_relaxed);
  130. return Shadow(raw);
  131. }
  132. ALWAYS_INLINE
  133. void StoreShadow(u64 *sp, u64 s) {
  134. atomic_store((atomic_uint64_t *)sp, s, memory_order_relaxed);
  135. }
  136. ALWAYS_INLINE
  137. void StoreIfNotYetStored(u64 *sp, u64 *s) {
  138. StoreShadow(sp, *s);
  139. *s = 0;
  140. }
  141. extern "C" void __tsan_report_race();
  142. ALWAYS_INLINE
  143. void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) {
  144. thr->racy_state[0] = cur.raw();
  145. thr->racy_state[1] = old.raw();
  146. thr->racy_shadow_addr = shadow_mem;
  147. #if !SANITIZER_GO
  148. HACKY_CALL(__tsan_report_race);
  149. #else
  150. ReportRace(thr);
  151. #endif
  152. }
  153. static inline bool HappensBefore(Shadow old, ThreadState *thr) {
  154. return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
  155. }
  156. ALWAYS_INLINE
  157. void MemoryAccessImpl1(ThreadState *thr, uptr addr, int kAccessSizeLog,
  158. bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem,
  159. Shadow cur) {
  160. // This potentially can live in an MMX/SSE scratch register.
  161. // The required intrinsics are:
  162. // __m128i _mm_move_epi64(__m128i*);
  163. // _mm_storel_epi64(u64*, __m128i);
  164. u64 store_word = cur.raw();
  165. bool stored = false;
  166. // scan all the shadow values and dispatch to 4 categories:
  167. // same, replace, candidate and race (see comments below).
  168. // we consider only 3 cases regarding access sizes:
  169. // equal, intersect and not intersect. initially I considered
  170. // larger and smaller as well, it allowed to replace some
  171. // 'candidates' with 'same' or 'replace', but I think
  172. // it's just not worth it (performance- and complexity-wise).
  173. Shadow old(0);
  174. // It release mode we manually unroll the loop,
  175. // because empirically gcc generates better code this way.
  176. // However, we can't afford unrolling in debug mode, because the function
  177. // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
  178. // threads, which is not enough for the unrolled loop.
  179. #if SANITIZER_DEBUG
  180. for (int idx = 0; idx < 4; idx++) {
  181. # include "tsan_update_shadow_word.inc"
  182. }
  183. #else
  184. int idx = 0;
  185. # include "tsan_update_shadow_word.inc"
  186. idx = 1;
  187. if (stored) {
  188. # include "tsan_update_shadow_word.inc"
  189. } else {
  190. # include "tsan_update_shadow_word.inc"
  191. }
  192. idx = 2;
  193. if (stored) {
  194. # include "tsan_update_shadow_word.inc"
  195. } else {
  196. # include "tsan_update_shadow_word.inc"
  197. }
  198. idx = 3;
  199. if (stored) {
  200. # include "tsan_update_shadow_word.inc"
  201. } else {
  202. # include "tsan_update_shadow_word.inc"
  203. }
  204. #endif
  205. // we did not find any races and had already stored
  206. // the current access info, so we are done
  207. if (LIKELY(stored))
  208. return;
  209. // choose a random candidate slot and replace it
  210. StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
  211. return;
  212. RACE:
  213. HandleRace(thr, shadow_mem, cur, old);
  214. return;
  215. }
  216. void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
  217. AccessType typ) {
  218. DCHECK(!(typ & kAccessAtomic));
  219. const bool kAccessIsWrite = !(typ & kAccessRead);
  220. const bool kIsAtomic = false;
  221. while (size) {
  222. int size1 = 1;
  223. int kAccessSizeLog = kSizeLog1;
  224. if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
  225. size1 = 8;
  226. kAccessSizeLog = kSizeLog8;
  227. } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
  228. size1 = 4;
  229. kAccessSizeLog = kSizeLog4;
  230. } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
  231. size1 = 2;
  232. kAccessSizeLog = kSizeLog2;
  233. }
  234. MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
  235. addr += size1;
  236. size -= size1;
  237. }
  238. }
  239. ALWAYS_INLINE
  240. bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  241. Shadow cur(a);
  242. for (uptr i = 0; i < kShadowCnt; i++) {
  243. Shadow old(LoadShadow(&s[i]));
  244. if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
  245. old.TidWithIgnore() == cur.TidWithIgnore() &&
  246. old.epoch() > sync_epoch && old.IsAtomic() == cur.IsAtomic() &&
  247. old.IsRead() <= cur.IsRead())
  248. return true;
  249. }
  250. return false;
  251. }
  252. #if TSAN_VECTORIZE
  253. # define SHUF(v0, v1, i0, i1, i2, i3) \
  254. _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v0), \
  255. _mm_castsi128_ps(v1), \
  256. (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
  257. ALWAYS_INLINE
  258. bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  259. // This is an optimized version of ContainsSameAccessSlow.
  260. // load current access into access[0:63]
  261. const m128 access = _mm_cvtsi64_si128(a);
  262. // duplicate high part of access in addr0:
  263. // addr0[0:31] = access[32:63]
  264. // addr0[32:63] = access[32:63]
  265. // addr0[64:95] = access[32:63]
  266. // addr0[96:127] = access[32:63]
  267. const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
  268. // load 4 shadow slots
  269. const m128 shadow0 = _mm_load_si128((__m128i *)s);
  270. const m128 shadow1 = _mm_load_si128((__m128i *)s + 1);
  271. // load high parts of 4 shadow slots into addr_vect:
  272. // addr_vect[0:31] = shadow0[32:63]
  273. // addr_vect[32:63] = shadow0[96:127]
  274. // addr_vect[64:95] = shadow1[32:63]
  275. // addr_vect[96:127] = shadow1[96:127]
  276. m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
  277. if (!is_write) {
  278. // set IsRead bit in addr_vect
  279. const m128 rw_mask1 = _mm_cvtsi64_si128(1 << 15);
  280. const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
  281. addr_vect = _mm_or_si128(addr_vect, rw_mask);
  282. }
  283. // addr0 == addr_vect?
  284. const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
  285. // epoch1[0:63] = sync_epoch
  286. const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
  287. // epoch[0:31] = sync_epoch[0:31]
  288. // epoch[32:63] = sync_epoch[0:31]
  289. // epoch[64:95] = sync_epoch[0:31]
  290. // epoch[96:127] = sync_epoch[0:31]
  291. const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
  292. // load low parts of shadow cell epochs into epoch_vect:
  293. // epoch_vect[0:31] = shadow0[0:31]
  294. // epoch_vect[32:63] = shadow0[64:95]
  295. // epoch_vect[64:95] = shadow1[0:31]
  296. // epoch_vect[96:127] = shadow1[64:95]
  297. const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
  298. // epoch_vect >= sync_epoch?
  299. const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
  300. // addr_res & epoch_res
  301. const m128 res = _mm_and_si128(addr_res, epoch_res);
  302. // mask[0] = res[7]
  303. // mask[1] = res[15]
  304. // ...
  305. // mask[15] = res[127]
  306. const int mask = _mm_movemask_epi8(res);
  307. return mask != 0;
  308. }
  309. #endif
  310. ALWAYS_INLINE
  311. bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  312. #if TSAN_VECTORIZE
  313. bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
  314. // NOTE: this check can fail if the shadow is concurrently mutated
  315. // by other threads. But it still can be useful if you modify
  316. // ContainsSameAccessFast and want to ensure that it's not completely broken.
  317. // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
  318. return res;
  319. #else
  320. return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
  321. #endif
  322. }
  323. ALWAYS_INLINE USED void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
  324. int kAccessSizeLog, bool kAccessIsWrite,
  325. bool kIsAtomic) {
  326. RawShadow *shadow_mem = MemToShadow(addr);
  327. DPrintf2(
  328. "#%d: MemoryAccess: @%p %p size=%d"
  329. " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
  330. (int)thr->fast_state.tid(), (void *)pc, (void *)addr,
  331. (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
  332. (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2],
  333. (uptr)shadow_mem[3]);
  334. #if SANITIZER_DEBUG
  335. if (!IsAppMem(addr)) {
  336. Printf("Access to non app mem %zx\n", addr);
  337. DCHECK(IsAppMem(addr));
  338. }
  339. if (!IsShadowMem(shadow_mem)) {
  340. Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
  341. DCHECK(IsShadowMem(shadow_mem));
  342. }
  343. #endif
  344. if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
  345. // Access to .rodata section, no races here.
  346. // Measurements show that it can be 10-20% of all memory accesses.
  347. return;
  348. }
  349. FastState fast_state = thr->fast_state;
  350. if (UNLIKELY(fast_state.GetIgnoreBit())) {
  351. return;
  352. }
  353. Shadow cur(fast_state);
  354. cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
  355. cur.SetWrite(kAccessIsWrite);
  356. cur.SetAtomic(kIsAtomic);
  357. if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
  358. kAccessIsWrite))) {
  359. return;
  360. }
  361. if (kCollectHistory) {
  362. fast_state.IncrementEpoch();
  363. thr->fast_state = fast_state;
  364. TraceAddEvent(thr, fast_state, EventTypeMop, pc);
  365. cur.IncrementEpoch();
  366. }
  367. MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
  368. shadow_mem, cur);
  369. }
  370. // Called by MemoryAccessRange in tsan_rtl_thread.cpp
  371. ALWAYS_INLINE USED void MemoryAccessImpl(ThreadState *thr, uptr addr,
  372. int kAccessSizeLog,
  373. bool kAccessIsWrite, bool kIsAtomic,
  374. u64 *shadow_mem, Shadow cur) {
  375. if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
  376. kAccessIsWrite))) {
  377. return;
  378. }
  379. MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
  380. shadow_mem, cur);
  381. }
  382. static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
  383. u64 val) {
  384. (void)thr;
  385. (void)pc;
  386. if (size == 0)
  387. return;
  388. // FIXME: fix me.
  389. uptr offset = addr % kShadowCell;
  390. if (offset) {
  391. offset = kShadowCell - offset;
  392. if (size <= offset)
  393. return;
  394. addr += offset;
  395. size -= offset;
  396. }
  397. DCHECK_EQ(addr % 8, 0);
  398. // If a user passes some insane arguments (memset(0)),
  399. // let it just crash as usual.
  400. if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
  401. return;
  402. // Don't want to touch lots of shadow memory.
  403. // If a program maps 10MB stack, there is no need reset the whole range.
  404. size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
  405. // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
  406. if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
  407. RawShadow *p = MemToShadow(addr);
  408. CHECK(IsShadowMem(p));
  409. CHECK(IsShadowMem(p + size * kShadowCnt / kShadowCell - 1));
  410. // FIXME: may overwrite a part outside the region
  411. for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
  412. p[i++] = val;
  413. for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0;
  414. }
  415. } else {
  416. // The region is big, reset only beginning and end.
  417. const uptr kPageSize = GetPageSizeCached();
  418. RawShadow *begin = MemToShadow(addr);
  419. RawShadow *end = begin + size / kShadowCell * kShadowCnt;
  420. RawShadow *p = begin;
  421. // Set at least first kPageSize/2 to page boundary.
  422. while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
  423. *p++ = val;
  424. for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
  425. }
  426. // Reset middle part.
  427. RawShadow *p1 = p;
  428. p = RoundDown(end, kPageSize);
  429. if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1))
  430. Die();
  431. // Set the ending.
  432. while (p < end) {
  433. *p++ = val;
  434. for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
  435. }
  436. }
  437. }
  438. void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  439. MemoryRangeSet(thr, pc, addr, size, 0);
  440. }
  441. void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  442. // Processing more than 1k (4k of shadow) is expensive,
  443. // can cause excessive memory consumption (user does not necessary touch
  444. // the whole range) and most likely unnecessary.
  445. if (size > 1024)
  446. size = 1024;
  447. CHECK_EQ(thr->is_freeing, false);
  448. thr->is_freeing = true;
  449. MemoryAccessRange(thr, pc, addr, size, true);
  450. thr->is_freeing = false;
  451. if (kCollectHistory) {
  452. thr->fast_state.IncrementEpoch();
  453. TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
  454. }
  455. Shadow s(thr->fast_state);
  456. s.ClearIgnoreBit();
  457. s.MarkAsFreed();
  458. s.SetWrite(true);
  459. s.SetAddr0AndSizeLog(0, 3);
  460. MemoryRangeSet(thr, pc, addr, size, s.raw());
  461. }
  462. void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  463. if (kCollectHistory) {
  464. thr->fast_state.IncrementEpoch();
  465. TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
  466. }
  467. Shadow s(thr->fast_state);
  468. s.ClearIgnoreBit();
  469. s.SetWrite(true);
  470. s.SetAddr0AndSizeLog(0, 3);
  471. MemoryRangeSet(thr, pc, addr, size, s.raw());
  472. }
  473. void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
  474. uptr size) {
  475. if (thr->ignore_reads_and_writes == 0)
  476. MemoryRangeImitateWrite(thr, pc, addr, size);
  477. else
  478. MemoryResetRange(thr, pc, addr, size);
  479. }
  480. void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
  481. bool is_write) {
  482. if (size == 0)
  483. return;
  484. RawShadow *shadow_mem = MemToShadow(addr);
  485. DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", thr->tid,
  486. (void *)pc, (void *)addr, (int)size, is_write);
  487. #if SANITIZER_DEBUG
  488. if (!IsAppMem(addr)) {
  489. Printf("Access to non app mem %zx\n", addr);
  490. DCHECK(IsAppMem(addr));
  491. }
  492. if (!IsAppMem(addr + size - 1)) {
  493. Printf("Access to non app mem %zx\n", addr + size - 1);
  494. DCHECK(IsAppMem(addr + size - 1));
  495. }
  496. if (!IsShadowMem(shadow_mem)) {
  497. Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
  498. DCHECK(IsShadowMem(shadow_mem));
  499. }
  500. if (!IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)) {
  501. Printf("Bad shadow addr %p (%zx)\n", shadow_mem + size * kShadowCnt / 8 - 1,
  502. addr + size - 1);
  503. DCHECK(IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1));
  504. }
  505. #endif
  506. if (*shadow_mem == kShadowRodata) {
  507. DCHECK(!is_write);
  508. // Access to .rodata section, no races here.
  509. // Measurements show that it can be 10-20% of all memory accesses.
  510. return;
  511. }
  512. FastState fast_state = thr->fast_state;
  513. if (fast_state.GetIgnoreBit())
  514. return;
  515. fast_state.IncrementEpoch();
  516. thr->fast_state = fast_state;
  517. TraceAddEvent(thr, fast_state, EventTypeMop, pc);
  518. bool unaligned = (addr % kShadowCell) != 0;
  519. // Handle unaligned beginning, if any.
  520. for (; addr % kShadowCell && size; addr++, size--) {
  521. int const kAccessSizeLog = 0;
  522. Shadow cur(fast_state);
  523. cur.SetWrite(is_write);
  524. cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
  525. MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
  526. cur);
  527. }
  528. if (unaligned)
  529. shadow_mem += kShadowCnt;
  530. // Handle middle part, if any.
  531. for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
  532. int const kAccessSizeLog = 3;
  533. Shadow cur(fast_state);
  534. cur.SetWrite(is_write);
  535. cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
  536. MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
  537. cur);
  538. shadow_mem += kShadowCnt;
  539. }
  540. // Handle ending, if any.
  541. for (; size; addr++, size--) {
  542. int const kAccessSizeLog = 0;
  543. Shadow cur(fast_state);
  544. cur.SetWrite(is_write);
  545. cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
  546. MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
  547. cur);
  548. }
  549. }
  550. } // namespace __tsan
  551. #if !SANITIZER_GO
  552. // Must be included in this file to make sure everything is inlined.
  553. # include "tsan_interface.inc"
  554. #endif