i387-tdep.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970
  1. /* Intel 387 floating point stuff.
  2. Copyright (C) 1988-2022 Free Software Foundation, Inc.
  3. This file is part of GDB.
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>. */
  14. #include "defs.h"
  15. #include "frame.h"
  16. #include "gdbcore.h"
  17. #include "inferior.h"
  18. #include "language.h"
  19. #include "regcache.h"
  20. #include "target-float.h"
  21. #include "value.h"
  22. #include "i386-tdep.h"
  23. #include "i387-tdep.h"
  24. #include "gdbsupport/x86-xstate.h"
  25. /* Print the floating point number specified by RAW. */
  26. static void
  27. print_i387_value (struct gdbarch *gdbarch,
  28. const gdb_byte *raw, struct ui_file *file)
  29. {
  30. /* We try to print 19 digits. The last digit may or may not contain
  31. garbage, but we'd better print one too many. We need enough room
  32. to print the value, 1 position for the sign, 1 for the decimal
  33. point, 19 for the digits and 6 for the exponent adds up to 27. */
  34. const struct type *type = i387_ext_type (gdbarch);
  35. std::string str = target_float_to_string (raw, type, " %-+27.19g");
  36. gdb_printf (file, "%s", str.c_str ());
  37. }
  38. /* Print the classification for the register contents RAW. */
  39. static void
  40. print_i387_ext (struct gdbarch *gdbarch,
  41. const gdb_byte *raw, struct ui_file *file)
  42. {
  43. int sign;
  44. int integer;
  45. unsigned int exponent;
  46. unsigned long fraction[2];
  47. sign = raw[9] & 0x80;
  48. integer = raw[7] & 0x80;
  49. exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
  50. fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
  51. fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
  52. | (raw[5] << 8) | raw[4]);
  53. if (exponent == 0x7fff && integer)
  54. {
  55. if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
  56. /* Infinity. */
  57. gdb_printf (file, " %cInf", (sign ? '-' : '+'));
  58. else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
  59. /* Real Indefinite (QNaN). */
  60. gdb_puts (" Real Indefinite (QNaN)", file);
  61. else if (fraction[1] & 0x40000000)
  62. /* QNaN. */
  63. gdb_puts (" QNaN", file);
  64. else
  65. /* SNaN. */
  66. gdb_puts (" SNaN", file);
  67. }
  68. else if (exponent < 0x7fff && exponent > 0x0000 && integer)
  69. /* Normal. */
  70. print_i387_value (gdbarch, raw, file);
  71. else if (exponent == 0x0000)
  72. {
  73. /* Denormal or zero. */
  74. print_i387_value (gdbarch, raw, file);
  75. if (integer)
  76. /* Pseudo-denormal. */
  77. gdb_puts (" Pseudo-denormal", file);
  78. else if (fraction[0] || fraction[1])
  79. /* Denormal. */
  80. gdb_puts (" Denormal", file);
  81. }
  82. else
  83. /* Unsupported. */
  84. gdb_puts (" Unsupported", file);
  85. }
  86. /* Print the status word STATUS. If STATUS_P is false, then STATUS
  87. was unavailable. */
  88. static void
  89. print_i387_status_word (int status_p,
  90. unsigned int status, struct ui_file *file)
  91. {
  92. gdb_printf (file, "Status Word: ");
  93. if (!status_p)
  94. {
  95. gdb_printf (file, "%s\n", _("<unavailable>"));
  96. return;
  97. }
  98. gdb_printf (file, "%s", hex_string_custom (status, 4));
  99. gdb_puts (" ", file);
  100. gdb_printf (file, " %s", (status & 0x0001) ? "IE" : " ");
  101. gdb_printf (file, " %s", (status & 0x0002) ? "DE" : " ");
  102. gdb_printf (file, " %s", (status & 0x0004) ? "ZE" : " ");
  103. gdb_printf (file, " %s", (status & 0x0008) ? "OE" : " ");
  104. gdb_printf (file, " %s", (status & 0x0010) ? "UE" : " ");
  105. gdb_printf (file, " %s", (status & 0x0020) ? "PE" : " ");
  106. gdb_puts (" ", file);
  107. gdb_printf (file, " %s", (status & 0x0080) ? "ES" : " ");
  108. gdb_puts (" ", file);
  109. gdb_printf (file, " %s", (status & 0x0040) ? "SF" : " ");
  110. gdb_puts (" ", file);
  111. gdb_printf (file, " %s", (status & 0x0100) ? "C0" : " ");
  112. gdb_printf (file, " %s", (status & 0x0200) ? "C1" : " ");
  113. gdb_printf (file, " %s", (status & 0x0400) ? "C2" : " ");
  114. gdb_printf (file, " %s", (status & 0x4000) ? "C3" : " ");
  115. gdb_puts ("\n", file);
  116. gdb_printf (file,
  117. " TOP: %d\n", ((status >> 11) & 7));
  118. }
  119. /* Print the control word CONTROL. If CONTROL_P is false, then
  120. CONTROL was unavailable. */
  121. static void
  122. print_i387_control_word (int control_p,
  123. unsigned int control, struct ui_file *file)
  124. {
  125. gdb_printf (file, "Control Word: ");
  126. if (!control_p)
  127. {
  128. gdb_printf (file, "%s\n", _("<unavailable>"));
  129. return;
  130. }
  131. gdb_printf (file, "%s", hex_string_custom (control, 4));
  132. gdb_puts (" ", file);
  133. gdb_printf (file, " %s", (control & 0x0001) ? "IM" : " ");
  134. gdb_printf (file, " %s", (control & 0x0002) ? "DM" : " ");
  135. gdb_printf (file, " %s", (control & 0x0004) ? "ZM" : " ");
  136. gdb_printf (file, " %s", (control & 0x0008) ? "OM" : " ");
  137. gdb_printf (file, " %s", (control & 0x0010) ? "UM" : " ");
  138. gdb_printf (file, " %s", (control & 0x0020) ? "PM" : " ");
  139. gdb_puts ("\n", file);
  140. gdb_puts (" PC: ", file);
  141. switch ((control >> 8) & 3)
  142. {
  143. case 0:
  144. gdb_puts ("Single Precision (24-bits)\n", file);
  145. break;
  146. case 1:
  147. gdb_puts ("Reserved\n", file);
  148. break;
  149. case 2:
  150. gdb_puts ("Double Precision (53-bits)\n", file);
  151. break;
  152. case 3:
  153. gdb_puts ("Extended Precision (64-bits)\n", file);
  154. break;
  155. }
  156. gdb_puts (" RC: ", file);
  157. switch ((control >> 10) & 3)
  158. {
  159. case 0:
  160. gdb_puts ("Round to nearest\n", file);
  161. break;
  162. case 1:
  163. gdb_puts ("Round down\n", file);
  164. break;
  165. case 2:
  166. gdb_puts ("Round up\n", file);
  167. break;
  168. case 3:
  169. gdb_puts ("Round toward zero\n", file);
  170. break;
  171. }
  172. }
  173. /* Print out the i387 floating point state. Note that we ignore FRAME
  174. in the code below. That's OK since floating-point registers are
  175. never saved on the stack. */
  176. void
  177. i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
  178. struct frame_info *frame, const char *args)
  179. {
  180. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
  181. ULONGEST fctrl;
  182. int fctrl_p;
  183. ULONGEST fstat;
  184. int fstat_p;
  185. ULONGEST ftag;
  186. int ftag_p;
  187. ULONGEST fiseg;
  188. int fiseg_p;
  189. ULONGEST fioff;
  190. int fioff_p;
  191. ULONGEST foseg;
  192. int foseg_p;
  193. ULONGEST fooff;
  194. int fooff_p;
  195. ULONGEST fop;
  196. int fop_p;
  197. int fpreg;
  198. int top;
  199. gdb_assert (gdbarch == get_frame_arch (frame));
  200. fctrl_p = read_frame_register_unsigned (frame,
  201. I387_FCTRL_REGNUM (tdep), &fctrl);
  202. fstat_p = read_frame_register_unsigned (frame,
  203. I387_FSTAT_REGNUM (tdep), &fstat);
  204. ftag_p = read_frame_register_unsigned (frame,
  205. I387_FTAG_REGNUM (tdep), &ftag);
  206. fiseg_p = read_frame_register_unsigned (frame,
  207. I387_FISEG_REGNUM (tdep), &fiseg);
  208. fioff_p = read_frame_register_unsigned (frame,
  209. I387_FIOFF_REGNUM (tdep), &fioff);
  210. foseg_p = read_frame_register_unsigned (frame,
  211. I387_FOSEG_REGNUM (tdep), &foseg);
  212. fooff_p = read_frame_register_unsigned (frame,
  213. I387_FOOFF_REGNUM (tdep), &fooff);
  214. fop_p = read_frame_register_unsigned (frame,
  215. I387_FOP_REGNUM (tdep), &fop);
  216. if (fstat_p)
  217. {
  218. top = ((fstat >> 11) & 7);
  219. for (fpreg = 7; fpreg >= 0; fpreg--)
  220. {
  221. struct value *regval;
  222. int regnum;
  223. int i;
  224. int tag = -1;
  225. gdb_printf (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
  226. if (ftag_p)
  227. {
  228. tag = (ftag >> (fpreg * 2)) & 3;
  229. switch (tag)
  230. {
  231. case 0:
  232. gdb_puts ("Valid ", file);
  233. break;
  234. case 1:
  235. gdb_puts ("Zero ", file);
  236. break;
  237. case 2:
  238. gdb_puts ("Special ", file);
  239. break;
  240. case 3:
  241. gdb_puts ("Empty ", file);
  242. break;
  243. }
  244. }
  245. else
  246. gdb_puts ("Unknown ", file);
  247. regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep);
  248. regval = get_frame_register_value (frame, regnum);
  249. if (value_entirely_available (regval))
  250. {
  251. const gdb_byte *raw = value_contents (regval).data ();
  252. gdb_puts ("0x", file);
  253. for (i = 9; i >= 0; i--)
  254. gdb_printf (file, "%02x", raw[i]);
  255. if (tag != -1 && tag != 3)
  256. print_i387_ext (gdbarch, raw, file);
  257. }
  258. else
  259. gdb_printf (file, "%s", _("<unavailable>"));
  260. gdb_puts ("\n", file);
  261. }
  262. }
  263. gdb_puts ("\n", file);
  264. print_i387_status_word (fstat_p, fstat, file);
  265. print_i387_control_word (fctrl_p, fctrl, file);
  266. gdb_printf (file, "Tag Word: %s\n",
  267. ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>"));
  268. gdb_printf (file, "Instruction Pointer: %s:",
  269. fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>"));
  270. gdb_printf (file, "%s\n",
  271. fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>"));
  272. gdb_printf (file, "Operand Pointer: %s:",
  273. foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>"));
  274. gdb_printf (file, "%s\n",
  275. fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>"));
  276. gdb_printf (file, "Opcode: %s\n",
  277. fop_p
  278. ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4))
  279. : _("<unavailable>"));
  280. }
  281. /* Return nonzero if a value of type TYPE stored in register REGNUM
  282. needs any special handling. */
  283. int
  284. i387_convert_register_p (struct gdbarch *gdbarch, int regnum,
  285. struct type *type)
  286. {
  287. if (i386_fp_regnum_p (gdbarch, regnum))
  288. {
  289. /* Floating point registers must be converted unless we are
  290. accessing them in their hardware type or TYPE is not float. */
  291. if (type == i387_ext_type (gdbarch)
  292. || type->code () != TYPE_CODE_FLT)
  293. return 0;
  294. else
  295. return 1;
  296. }
  297. return 0;
  298. }
  299. /* Read a value of type TYPE from register REGNUM in frame FRAME, and
  300. return its contents in TO. */
  301. int
  302. i387_register_to_value (struct frame_info *frame, int regnum,
  303. struct type *type, gdb_byte *to,
  304. int *optimizedp, int *unavailablep)
  305. {
  306. struct gdbarch *gdbarch = get_frame_arch (frame);
  307. gdb_byte from[I386_MAX_REGISTER_SIZE];
  308. gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
  309. /* We only support floating-point values. */
  310. if (type->code () != TYPE_CODE_FLT)
  311. {
  312. warning (_("Cannot convert floating-point register value "
  313. "to non-floating-point type."));
  314. *optimizedp = *unavailablep = 0;
  315. return 0;
  316. }
  317. /* Convert to TYPE. */
  318. if (!get_frame_register_bytes (frame, regnum, 0,
  319. gdb::make_array_view (from,
  320. register_size (gdbarch,
  321. regnum)),
  322. optimizedp, unavailablep))
  323. return 0;
  324. target_float_convert (from, i387_ext_type (gdbarch), to, type);
  325. *optimizedp = *unavailablep = 0;
  326. return 1;
  327. }
  328. /* Write the contents FROM of a value of type TYPE into register
  329. REGNUM in frame FRAME. */
  330. void
  331. i387_value_to_register (struct frame_info *frame, int regnum,
  332. struct type *type, const gdb_byte *from)
  333. {
  334. struct gdbarch *gdbarch = get_frame_arch (frame);
  335. gdb_byte to[I386_MAX_REGISTER_SIZE];
  336. gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
  337. /* We only support floating-point values. */
  338. if (type->code () != TYPE_CODE_FLT)
  339. {
  340. warning (_("Cannot convert non-floating-point type "
  341. "to floating-point register value."));
  342. return;
  343. }
  344. /* Convert from TYPE. */
  345. target_float_convert (from, type, to, i387_ext_type (gdbarch));
  346. put_frame_register (frame, regnum, to);
  347. }
  348. /* Handle FSAVE and FXSAVE formats. */
  349. /* At fsave_offset[REGNUM] you'll find the offset to the location in
  350. the data structure used by the "fsave" instruction where GDB
  351. register REGNUM is stored. */
  352. static int fsave_offset[] =
  353. {
  354. 28 + 0 * 10, /* %st(0) ... */
  355. 28 + 1 * 10,
  356. 28 + 2 * 10,
  357. 28 + 3 * 10,
  358. 28 + 4 * 10,
  359. 28 + 5 * 10,
  360. 28 + 6 * 10,
  361. 28 + 7 * 10, /* ... %st(7). */
  362. 0, /* `fctrl' (16 bits). */
  363. 4, /* `fstat' (16 bits). */
  364. 8, /* `ftag' (16 bits). */
  365. 16, /* `fiseg' (16 bits). */
  366. 12, /* `fioff'. */
  367. 24, /* `foseg' (16 bits). */
  368. 20, /* `fooff'. */
  369. 18 /* `fop' (bottom 11 bits). */
  370. };
  371. #define FSAVE_ADDR(tdep, fsave, regnum) \
  372. (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
  373. /* Fill register REGNUM in REGCACHE with the appropriate value from
  374. *FSAVE. This function masks off any of the reserved bits in
  375. *FSAVE. */
  376. void
  377. i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
  378. {
  379. struct gdbarch *gdbarch = regcache->arch ();
  380. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
  381. enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  382. const gdb_byte *regs = (const gdb_byte *) fsave;
  383. int i;
  384. gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  385. for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
  386. if (regnum == -1 || regnum == i)
  387. {
  388. if (fsave == NULL)
  389. {
  390. regcache->raw_supply (i, NULL);
  391. continue;
  392. }
  393. /* Most of the FPU control registers occupy only 16 bits in the
  394. fsave area. Give those a special treatment. */
  395. if (i >= I387_FCTRL_REGNUM (tdep)
  396. && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
  397. {
  398. gdb_byte val[4];
  399. memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
  400. val[2] = val[3] = 0;
  401. if (i == I387_FOP_REGNUM (tdep))
  402. val[1] &= ((1 << 3) - 1);
  403. regcache->raw_supply (i, val);
  404. }
  405. else
  406. regcache->raw_supply (i, FSAVE_ADDR (tdep, regs, i));
  407. }
  408. /* Provide dummy values for the SSE registers. */
  409. for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
  410. if (regnum == -1 || regnum == i)
  411. regcache->raw_supply (i, NULL);
  412. if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
  413. {
  414. gdb_byte buf[4];
  415. store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
  416. regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
  417. }
  418. }
  419. /* Fill register REGNUM (if it is a floating-point register) in *FSAVE
  420. with the value from REGCACHE. If REGNUM is -1, do this for all
  421. registers. This function doesn't touch any of the reserved bits in
  422. *FSAVE. */
  423. void
  424. i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
  425. {
  426. gdbarch *arch = regcache->arch ();
  427. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
  428. gdb_byte *regs = (gdb_byte *) fsave;
  429. int i;
  430. gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  431. for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
  432. if (regnum == -1 || regnum == i)
  433. {
  434. /* Most of the FPU control registers occupy only 16 bits in
  435. the fsave area. Give those a special treatment. */
  436. if (i >= I387_FCTRL_REGNUM (tdep)
  437. && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
  438. {
  439. gdb_byte buf[4];
  440. regcache->raw_collect (i, buf);
  441. if (i == I387_FOP_REGNUM (tdep))
  442. {
  443. /* The opcode occupies only 11 bits. Make sure we
  444. don't touch the other bits. */
  445. buf[1] &= ((1 << 3) - 1);
  446. buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
  447. }
  448. memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
  449. }
  450. else
  451. regcache->raw_collect (i, FSAVE_ADDR (tdep, regs, i));
  452. }
  453. }
  454. /* At fxsave_offset[REGNUM] you'll find the offset to the location in
  455. the data structure used by the "fxsave" instruction where GDB
  456. register REGNUM is stored. */
  457. static int fxsave_offset[] =
  458. {
  459. 32, /* %st(0) through ... */
  460. 48,
  461. 64,
  462. 80,
  463. 96,
  464. 112,
  465. 128,
  466. 144, /* ... %st(7) (80 bits each). */
  467. 0, /* `fctrl' (16 bits). */
  468. 2, /* `fstat' (16 bits). */
  469. 4, /* `ftag' (16 bits). */
  470. 12, /* `fiseg' (16 bits). */
  471. 8, /* `fioff'. */
  472. 20, /* `foseg' (16 bits). */
  473. 16, /* `fooff'. */
  474. 6, /* `fop' (bottom 11 bits). */
  475. 160 + 0 * 16, /* %xmm0 through ... */
  476. 160 + 1 * 16,
  477. 160 + 2 * 16,
  478. 160 + 3 * 16,
  479. 160 + 4 * 16,
  480. 160 + 5 * 16,
  481. 160 + 6 * 16,
  482. 160 + 7 * 16,
  483. 160 + 8 * 16,
  484. 160 + 9 * 16,
  485. 160 + 10 * 16,
  486. 160 + 11 * 16,
  487. 160 + 12 * 16,
  488. 160 + 13 * 16,
  489. 160 + 14 * 16,
  490. 160 + 15 * 16, /* ... %xmm15 (128 bits each). */
  491. };
  492. #define FXSAVE_ADDR(tdep, fxsave, regnum) \
  493. (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
  494. /* We made an unfortunate choice in putting %mxcsr after the SSE
  495. registers %xmm0-%xmm7 instead of before, since it makes supporting
  496. the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
  497. don't include the offset for %mxcsr here above. */
  498. #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
  499. static int i387_tag (const gdb_byte *raw);
  500. /* Fill register REGNUM in REGCACHE with the appropriate
  501. floating-point or SSE register value from *FXSAVE. This function
  502. masks off any of the reserved bits in *FXSAVE. */
  503. void
  504. i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
  505. {
  506. gdbarch *arch = regcache->arch ();
  507. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
  508. const gdb_byte *regs = (const gdb_byte *) fxsave;
  509. int i;
  510. gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  511. gdb_assert (tdep->num_xmm_regs > 0);
  512. for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
  513. if (regnum == -1 || regnum == i)
  514. {
  515. if (regs == NULL)
  516. {
  517. regcache->raw_supply (i, NULL);
  518. continue;
  519. }
  520. /* Most of the FPU control registers occupy only 16 bits in
  521. the fxsave area. Give those a special treatment. */
  522. if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
  523. && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
  524. {
  525. gdb_byte val[4];
  526. memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
  527. val[2] = val[3] = 0;
  528. if (i == I387_FOP_REGNUM (tdep))
  529. val[1] &= ((1 << 3) - 1);
  530. else if (i== I387_FTAG_REGNUM (tdep))
  531. {
  532. /* The fxsave area contains a simplified version of
  533. the tag word. We have to look at the actual 80-bit
  534. FP data to recreate the traditional i387 tag word. */
  535. unsigned long ftag = 0;
  536. int fpreg;
  537. int top;
  538. top = ((FXSAVE_ADDR (tdep, regs,
  539. I387_FSTAT_REGNUM (tdep)))[1] >> 3);
  540. top &= 0x7;
  541. for (fpreg = 7; fpreg >= 0; fpreg--)
  542. {
  543. int tag;
  544. if (val[0] & (1 << fpreg))
  545. {
  546. int thisreg = (fpreg + 8 - top) % 8
  547. + I387_ST0_REGNUM (tdep);
  548. tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
  549. }
  550. else
  551. tag = 3; /* Empty */
  552. ftag |= tag << (2 * fpreg);
  553. }
  554. val[0] = ftag & 0xff;
  555. val[1] = (ftag >> 8) & 0xff;
  556. }
  557. regcache->raw_supply (i, val);
  558. }
  559. else
  560. regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
  561. }
  562. if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
  563. {
  564. if (regs == NULL)
  565. regcache->raw_supply (I387_MXCSR_REGNUM (tdep), NULL);
  566. else
  567. regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
  568. FXSAVE_MXCSR_ADDR (regs));
  569. }
  570. }
  571. /* Fill register REGNUM (if it is a floating-point or SSE register) in
  572. *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
  573. all registers. This function doesn't touch any of the reserved
  574. bits in *FXSAVE. */
  575. void
  576. i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
  577. {
  578. gdbarch *arch = regcache->arch ();
  579. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
  580. gdb_byte *regs = (gdb_byte *) fxsave;
  581. int i;
  582. gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  583. gdb_assert (tdep->num_xmm_regs > 0);
  584. for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
  585. if (regnum == -1 || regnum == i)
  586. {
  587. /* Most of the FPU control registers occupy only 16 bits in
  588. the fxsave area. Give those a special treatment. */
  589. if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
  590. && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
  591. {
  592. gdb_byte buf[4];
  593. regcache->raw_collect (i, buf);
  594. if (i == I387_FOP_REGNUM (tdep))
  595. {
  596. /* The opcode occupies only 11 bits. Make sure we
  597. don't touch the other bits. */
  598. buf[1] &= ((1 << 3) - 1);
  599. buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
  600. }
  601. else if (i == I387_FTAG_REGNUM (tdep))
  602. {
  603. /* Converting back is much easier. */
  604. unsigned short ftag;
  605. int fpreg;
  606. ftag = (buf[1] << 8) | buf[0];
  607. buf[0] = 0;
  608. buf[1] = 0;
  609. for (fpreg = 7; fpreg >= 0; fpreg--)
  610. {
  611. int tag = (ftag >> (fpreg * 2)) & 3;
  612. if (tag != 3)
  613. buf[0] |= (1 << fpreg);
  614. }
  615. }
  616. memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
  617. }
  618. else
  619. regcache->raw_collect (i, FXSAVE_ADDR (tdep, regs, i));
  620. }
  621. if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
  622. regcache->raw_collect (I387_MXCSR_REGNUM (tdep),
  623. FXSAVE_MXCSR_ADDR (regs));
  624. }
  625. /* `xstate_bv' is at byte offset 512. */
  626. #define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512)
  627. /* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in
  628. the upper 128bit of AVX register data structure used by the "xsave"
  629. instruction where GDB register REGNUM is stored. */
  630. static int xsave_avxh_offset[] =
  631. {
  632. 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */
  633. 576 + 1 * 16,
  634. 576 + 2 * 16,
  635. 576 + 3 * 16,
  636. 576 + 4 * 16,
  637. 576 + 5 * 16,
  638. 576 + 6 * 16,
  639. 576 + 7 * 16,
  640. 576 + 8 * 16,
  641. 576 + 9 * 16,
  642. 576 + 10 * 16,
  643. 576 + 11 * 16,
  644. 576 + 12 * 16,
  645. 576 + 13 * 16,
  646. 576 + 14 * 16,
  647. 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */
  648. };
  649. #define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \
  650. (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)])
  651. /* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in
  652. the upper 128bit of ZMM register data structure used by the "xsave"
  653. instruction where GDB register REGNUM is stored. */
  654. static int xsave_ymm_avx512_offset[] =
  655. {
  656. /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */
  657. 1664 + 16 + 0 * 64, /* %ymm16 through... */
  658. 1664 + 16 + 1 * 64,
  659. 1664 + 16 + 2 * 64,
  660. 1664 + 16 + 3 * 64,
  661. 1664 + 16 + 4 * 64,
  662. 1664 + 16 + 5 * 64,
  663. 1664 + 16 + 6 * 64,
  664. 1664 + 16 + 7 * 64,
  665. 1664 + 16 + 8 * 64,
  666. 1664 + 16 + 9 * 64,
  667. 1664 + 16 + 10 * 64,
  668. 1664 + 16 + 11 * 64,
  669. 1664 + 16 + 12 * 64,
  670. 1664 + 16 + 13 * 64,
  671. 1664 + 16 + 14 * 64,
  672. 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */
  673. };
  674. #define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \
  675. (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)])
  676. static int xsave_xmm_avx512_offset[] =
  677. {
  678. 1664 + 0 * 64, /* %ymm16 through... */
  679. 1664 + 1 * 64,
  680. 1664 + 2 * 64,
  681. 1664 + 3 * 64,
  682. 1664 + 4 * 64,
  683. 1664 + 5 * 64,
  684. 1664 + 6 * 64,
  685. 1664 + 7 * 64,
  686. 1664 + 8 * 64,
  687. 1664 + 9 * 64,
  688. 1664 + 10 * 64,
  689. 1664 + 11 * 64,
  690. 1664 + 12 * 64,
  691. 1664 + 13 * 64,
  692. 1664 + 14 * 64,
  693. 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */
  694. };
  695. #define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \
  696. (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)])
  697. static int xsave_mpx_offset[] = {
  698. 960 + 0 * 16, /* bnd0r...bnd3r registers. */
  699. 960 + 1 * 16,
  700. 960 + 2 * 16,
  701. 960 + 3 * 16,
  702. 1024 + 0 * 8, /* bndcfg ... bndstatus. */
  703. 1024 + 1 * 8,
  704. };
  705. #define XSAVE_MPX_ADDR(tdep, xsave, regnum) \
  706. (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)])
  707. /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location
  708. of the AVX512 opmask register data structure used by the "xsave"
  709. instruction where GDB register REGNUM is stored. */
  710. static int xsave_avx512_k_offset[] =
  711. {
  712. 1088 + 0 * 8, /* %k0 through... */
  713. 1088 + 1 * 8,
  714. 1088 + 2 * 8,
  715. 1088 + 3 * 8,
  716. 1088 + 4 * 8,
  717. 1088 + 5 * 8,
  718. 1088 + 6 * 8,
  719. 1088 + 7 * 8 /* %k7 (64 bits each). */
  720. };
  721. #define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \
  722. (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)])
  723. /* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in
  724. the upper 256bit of AVX512 ZMMH register data structure used by the "xsave"
  725. instruction where GDB register REGNUM is stored. */
  726. static int xsave_avx512_zmm_h_offset[] =
  727. {
  728. 1152 + 0 * 32,
  729. 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */
  730. 1152 + 2 * 32,
  731. 1152 + 3 * 32,
  732. 1152 + 4 * 32,
  733. 1152 + 5 * 32,
  734. 1152 + 6 * 32,
  735. 1152 + 7 * 32,
  736. 1152 + 8 * 32,
  737. 1152 + 9 * 32,
  738. 1152 + 10 * 32,
  739. 1152 + 11 * 32,
  740. 1152 + 12 * 32,
  741. 1152 + 13 * 32,
  742. 1152 + 14 * 32,
  743. 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */
  744. 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */
  745. 1664 + 32 + 1 * 64,
  746. 1664 + 32 + 2 * 64,
  747. 1664 + 32 + 3 * 64,
  748. 1664 + 32 + 4 * 64,
  749. 1664 + 32 + 5 * 64,
  750. 1664 + 32 + 6 * 64,
  751. 1664 + 32 + 7 * 64,
  752. 1664 + 32 + 8 * 64,
  753. 1664 + 32 + 9 * 64,
  754. 1664 + 32 + 10 * 64,
  755. 1664 + 32 + 11 * 64,
  756. 1664 + 32 + 12 * 64,
  757. 1664 + 32 + 13 * 64,
  758. 1664 + 32 + 14 * 64,
  759. 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */
  760. };
  761. #define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \
  762. (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)])
  763. /* At xsave_pkeys_offset[REGNUM] you find the offset to the location
  764. of the PKRU register data structure used by the "xsave"
  765. instruction where GDB register REGNUM is stored. */
  766. static int xsave_pkeys_offset[] =
  767. {
  768. 2688 + 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by
  769. instructions and applications). */
  770. };
  771. #define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \
  772. (xsave + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)])
  773. /* Extract from XSAVE a bitset of the features that are available on the
  774. target, but which have not yet been enabled. */
  775. ULONGEST
  776. i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave)
  777. {
  778. enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  779. const gdb_byte *regs = (const gdb_byte *) xsave;
  780. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
  781. /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */
  782. ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
  783. 8, byte_order);
  784. /* Clear part in vector registers if its bit in xstat_bv is zero. */
  785. ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0;
  786. return clear_bv;
  787. }
  788. /* Similar to i387_supply_fxsave, but use XSAVE extended state. */
  789. void
  790. i387_supply_xsave (struct regcache *regcache, int regnum,
  791. const void *xsave)
  792. {
  793. struct gdbarch *gdbarch = regcache->arch ();
  794. enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  795. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
  796. const gdb_byte *regs = (const gdb_byte *) xsave;
  797. int i;
  798. /* In 64-bit mode the split between "low" and "high" ZMM registers is at
  799. ZMM16. Outside of 64-bit mode there are no "high" ZMM registers at all.
  800. Precalculate the number to be used for the split point, with the all
  801. registers in the "low" portion outside of 64-bit mode. */
  802. unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep)
  803. + std::min (tdep->num_zmm_regs, 16);
  804. ULONGEST clear_bv;
  805. static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 };
  806. enum
  807. {
  808. none = 0x0,
  809. x87 = 0x1,
  810. sse = 0x2,
  811. avxh = 0x4,
  812. mpx = 0x8,
  813. avx512_k = 0x10,
  814. avx512_zmm_h = 0x20,
  815. avx512_ymmh_avx512 = 0x40,
  816. avx512_xmm_avx512 = 0x80,
  817. pkeys = 0x100,
  818. all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
  819. | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
  820. } regclass;
  821. gdb_assert (regs != NULL);
  822. gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  823. gdb_assert (tdep->num_xmm_regs > 0);
  824. if (regnum == -1)
  825. regclass = all;
  826. else if (regnum >= I387_PKRU_REGNUM (tdep)
  827. && regnum < I387_PKEYSEND_REGNUM (tdep))
  828. regclass = pkeys;
  829. else if (regnum >= I387_ZMM0H_REGNUM (tdep)
  830. && regnum < I387_ZMMENDH_REGNUM (tdep))
  831. regclass = avx512_zmm_h;
  832. else if (regnum >= I387_K0_REGNUM (tdep)
  833. && regnum < I387_KEND_REGNUM (tdep))
  834. regclass = avx512_k;
  835. else if (regnum >= I387_YMM16H_REGNUM (tdep)
  836. && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
  837. regclass = avx512_ymmh_avx512;
  838. else if (regnum >= I387_XMM16_REGNUM (tdep)
  839. && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
  840. regclass = avx512_xmm_avx512;
  841. else if (regnum >= I387_YMM0H_REGNUM (tdep)
  842. && regnum < I387_YMMENDH_REGNUM (tdep))
  843. regclass = avxh;
  844. else if (regnum >= I387_BND0R_REGNUM (tdep)
  845. && regnum < I387_MPXEND_REGNUM (tdep))
  846. regclass = mpx;
  847. else if (regnum >= I387_XMM0_REGNUM (tdep)
  848. && regnum < I387_MXCSR_REGNUM (tdep))
  849. regclass = sse;
  850. else if (regnum >= I387_ST0_REGNUM (tdep)
  851. && regnum < I387_FCTRL_REGNUM (tdep))
  852. regclass = x87;
  853. else
  854. regclass = none;
  855. clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
  856. /* With the delayed xsave mechanism, in between the program
  857. starting, and the program accessing the vector registers for the
  858. first time, the register's values are invalid. The kernel
  859. initializes register states to zero when they are set the first
  860. time in a program. This means that from the user-space programs'
  861. perspective, it's the same as if the registers have always been
  862. zero from the start of the program. Therefore, the debugger
  863. should provide the same illusion to the user. */
  864. switch (regclass)
  865. {
  866. case none:
  867. break;
  868. case pkeys:
  869. if ((clear_bv & X86_XSTATE_PKRU))
  870. regcache->raw_supply (regnum, zero);
  871. else
  872. regcache->raw_supply (regnum, XSAVE_PKEYS_ADDR (tdep, regs, regnum));
  873. return;
  874. case avx512_zmm_h:
  875. if ((clear_bv & (regnum < zmm_endlo_regnum ? X86_XSTATE_ZMM_H
  876. : X86_XSTATE_ZMM)))
  877. regcache->raw_supply (regnum, zero);
  878. else
  879. regcache->raw_supply (regnum,
  880. XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum));
  881. return;
  882. case avx512_k:
  883. if ((clear_bv & X86_XSTATE_K))
  884. regcache->raw_supply (regnum, zero);
  885. else
  886. regcache->raw_supply (regnum, XSAVE_AVX512_K_ADDR (tdep, regs, regnum));
  887. return;
  888. case avx512_ymmh_avx512:
  889. if ((clear_bv & X86_XSTATE_ZMM))
  890. regcache->raw_supply (regnum, zero);
  891. else
  892. regcache->raw_supply (regnum,
  893. XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum));
  894. return;
  895. case avx512_xmm_avx512:
  896. if ((clear_bv & X86_XSTATE_ZMM))
  897. regcache->raw_supply (regnum, zero);
  898. else
  899. regcache->raw_supply (regnum,
  900. XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum));
  901. return;
  902. case avxh:
  903. if ((clear_bv & X86_XSTATE_AVX))
  904. regcache->raw_supply (regnum, zero);
  905. else
  906. regcache->raw_supply (regnum, XSAVE_AVXH_ADDR (tdep, regs, regnum));
  907. return;
  908. case mpx:
  909. if ((clear_bv & X86_XSTATE_BNDREGS))
  910. regcache->raw_supply (regnum, zero);
  911. else
  912. regcache->raw_supply (regnum, XSAVE_MPX_ADDR (tdep, regs, regnum));
  913. return;
  914. case sse:
  915. if ((clear_bv & X86_XSTATE_SSE))
  916. regcache->raw_supply (regnum, zero);
  917. else
  918. regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
  919. return;
  920. case x87:
  921. if ((clear_bv & X86_XSTATE_X87))
  922. regcache->raw_supply (regnum, zero);
  923. else
  924. regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
  925. return;
  926. case all:
  927. /* Handle PKEYS registers. */
  928. if ((tdep->xcr0 & X86_XSTATE_PKRU))
  929. {
  930. if ((clear_bv & X86_XSTATE_PKRU))
  931. {
  932. for (i = I387_PKRU_REGNUM (tdep);
  933. i < I387_PKEYSEND_REGNUM (tdep);
  934. i++)
  935. regcache->raw_supply (i, zero);
  936. }
  937. else
  938. {
  939. for (i = I387_PKRU_REGNUM (tdep);
  940. i < I387_PKEYSEND_REGNUM (tdep);
  941. i++)
  942. regcache->raw_supply (i, XSAVE_PKEYS_ADDR (tdep, regs, i));
  943. }
  944. }
  945. /* Handle the upper halves of the low 8/16 ZMM registers. */
  946. if ((tdep->xcr0 & X86_XSTATE_ZMM_H))
  947. {
  948. if ((clear_bv & X86_XSTATE_ZMM_H))
  949. {
  950. for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
  951. regcache->raw_supply (i, zero);
  952. }
  953. else
  954. {
  955. for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
  956. regcache->raw_supply (i,
  957. XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i));
  958. }
  959. }
  960. /* Handle AVX512 OpMask registers. */
  961. if ((tdep->xcr0 & X86_XSTATE_K))
  962. {
  963. if ((clear_bv & X86_XSTATE_K))
  964. {
  965. for (i = I387_K0_REGNUM (tdep);
  966. i < I387_KEND_REGNUM (tdep);
  967. i++)
  968. regcache->raw_supply (i, zero);
  969. }
  970. else
  971. {
  972. for (i = I387_K0_REGNUM (tdep);
  973. i < I387_KEND_REGNUM (tdep);
  974. i++)
  975. regcache->raw_supply (i, XSAVE_AVX512_K_ADDR (tdep, regs, i));
  976. }
  977. }
  978. /* Handle the upper 16 ZMM/YMM/XMM registers (if any). */
  979. if ((tdep->xcr0 & X86_XSTATE_ZMM))
  980. {
  981. if ((clear_bv & X86_XSTATE_ZMM))
  982. {
  983. for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++)
  984. regcache->raw_supply (i, zero);
  985. for (i = I387_YMM16H_REGNUM (tdep);
  986. i < I387_YMMH_AVX512_END_REGNUM (tdep);
  987. i++)
  988. regcache->raw_supply (i, zero);
  989. for (i = I387_XMM16_REGNUM (tdep);
  990. i < I387_XMM_AVX512_END_REGNUM (tdep);
  991. i++)
  992. regcache->raw_supply (i, zero);
  993. }
  994. else
  995. {
  996. for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++)
  997. regcache->raw_supply (i,
  998. XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i));
  999. for (i = I387_YMM16H_REGNUM (tdep);
  1000. i < I387_YMMH_AVX512_END_REGNUM (tdep);
  1001. i++)
  1002. regcache->raw_supply (i, XSAVE_YMM_AVX512_ADDR (tdep, regs, i));
  1003. for (i = I387_XMM16_REGNUM (tdep);
  1004. i < I387_XMM_AVX512_END_REGNUM (tdep);
  1005. i++)
  1006. regcache->raw_supply (i, XSAVE_XMM_AVX512_ADDR (tdep, regs, i));
  1007. }
  1008. }
  1009. /* Handle the upper YMM registers. */
  1010. if ((tdep->xcr0 & X86_XSTATE_AVX))
  1011. {
  1012. if ((clear_bv & X86_XSTATE_AVX))
  1013. {
  1014. for (i = I387_YMM0H_REGNUM (tdep);
  1015. i < I387_YMMENDH_REGNUM (tdep);
  1016. i++)
  1017. regcache->raw_supply (i, zero);
  1018. }
  1019. else
  1020. {
  1021. for (i = I387_YMM0H_REGNUM (tdep);
  1022. i < I387_YMMENDH_REGNUM (tdep);
  1023. i++)
  1024. regcache->raw_supply (i, XSAVE_AVXH_ADDR (tdep, regs, i));
  1025. }
  1026. }
  1027. /* Handle the MPX registers. */
  1028. if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
  1029. {
  1030. if (clear_bv & X86_XSTATE_BNDREGS)
  1031. {
  1032. for (i = I387_BND0R_REGNUM (tdep);
  1033. i < I387_BNDCFGU_REGNUM (tdep); i++)
  1034. regcache->raw_supply (i, zero);
  1035. }
  1036. else
  1037. {
  1038. for (i = I387_BND0R_REGNUM (tdep);
  1039. i < I387_BNDCFGU_REGNUM (tdep); i++)
  1040. regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i));
  1041. }
  1042. }
  1043. /* Handle the MPX registers. */
  1044. if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
  1045. {
  1046. if (clear_bv & X86_XSTATE_BNDCFG)
  1047. {
  1048. for (i = I387_BNDCFGU_REGNUM (tdep);
  1049. i < I387_MPXEND_REGNUM (tdep); i++)
  1050. regcache->raw_supply (i, zero);
  1051. }
  1052. else
  1053. {
  1054. for (i = I387_BNDCFGU_REGNUM (tdep);
  1055. i < I387_MPXEND_REGNUM (tdep); i++)
  1056. regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i));
  1057. }
  1058. }
  1059. /* Handle the XMM registers. */
  1060. if ((tdep->xcr0 & X86_XSTATE_SSE))
  1061. {
  1062. if ((clear_bv & X86_XSTATE_SSE))
  1063. {
  1064. for (i = I387_XMM0_REGNUM (tdep);
  1065. i < I387_MXCSR_REGNUM (tdep);
  1066. i++)
  1067. regcache->raw_supply (i, zero);
  1068. }
  1069. else
  1070. {
  1071. for (i = I387_XMM0_REGNUM (tdep);
  1072. i < I387_MXCSR_REGNUM (tdep); i++)
  1073. regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
  1074. }
  1075. }
  1076. /* Handle the x87 registers. */
  1077. if ((tdep->xcr0 & X86_XSTATE_X87))
  1078. {
  1079. if ((clear_bv & X86_XSTATE_X87))
  1080. {
  1081. for (i = I387_ST0_REGNUM (tdep);
  1082. i < I387_FCTRL_REGNUM (tdep);
  1083. i++)
  1084. regcache->raw_supply (i, zero);
  1085. }
  1086. else
  1087. {
  1088. for (i = I387_ST0_REGNUM (tdep);
  1089. i < I387_FCTRL_REGNUM (tdep);
  1090. i++)
  1091. regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
  1092. }
  1093. }
  1094. break;
  1095. }
  1096. /* Only handle x87 control registers. */
  1097. for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
  1098. if (regnum == -1 || regnum == i)
  1099. {
  1100. if (clear_bv & X86_XSTATE_X87)
  1101. {
  1102. if (i == I387_FCTRL_REGNUM (tdep))
  1103. {
  1104. gdb_byte buf[4];
  1105. store_unsigned_integer (buf, 4, byte_order,
  1106. I387_FCTRL_INIT_VAL);
  1107. regcache->raw_supply (i, buf);
  1108. }
  1109. else if (i == I387_FTAG_REGNUM (tdep))
  1110. {
  1111. gdb_byte buf[4];
  1112. store_unsigned_integer (buf, 4, byte_order, 0xffff);
  1113. regcache->raw_supply (i, buf);
  1114. }
  1115. else
  1116. regcache->raw_supply (i, zero);
  1117. }
  1118. /* Most of the FPU control registers occupy only 16 bits in
  1119. the xsave extended state. Give those a special treatment. */
  1120. else if (i != I387_FIOFF_REGNUM (tdep)
  1121. && i != I387_FOOFF_REGNUM (tdep))
  1122. {
  1123. gdb_byte val[4];
  1124. memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
  1125. val[2] = val[3] = 0;
  1126. if (i == I387_FOP_REGNUM (tdep))
  1127. val[1] &= ((1 << 3) - 1);
  1128. else if (i == I387_FTAG_REGNUM (tdep))
  1129. {
  1130. /* The fxsave area contains a simplified version of
  1131. the tag word. We have to look at the actual 80-bit
  1132. FP data to recreate the traditional i387 tag word. */
  1133. unsigned long ftag = 0;
  1134. int fpreg;
  1135. int top;
  1136. top = ((FXSAVE_ADDR (tdep, regs,
  1137. I387_FSTAT_REGNUM (tdep)))[1] >> 3);
  1138. top &= 0x7;
  1139. for (fpreg = 7; fpreg >= 0; fpreg--)
  1140. {
  1141. int tag;
  1142. if (val[0] & (1 << fpreg))
  1143. {
  1144. int thisreg = (fpreg + 8 - top) % 8
  1145. + I387_ST0_REGNUM (tdep);
  1146. tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
  1147. }
  1148. else
  1149. tag = 3; /* Empty */
  1150. ftag |= tag << (2 * fpreg);
  1151. }
  1152. val[0] = ftag & 0xff;
  1153. val[1] = (ftag >> 8) & 0xff;
  1154. }
  1155. regcache->raw_supply (i, val);
  1156. }
  1157. else
  1158. regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
  1159. }
  1160. if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
  1161. {
  1162. /* The MXCSR register is placed into the xsave buffer if either the
  1163. AVX or SSE features are enabled. */
  1164. if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
  1165. == (X86_XSTATE_AVX | X86_XSTATE_SSE))
  1166. {
  1167. gdb_byte buf[4];
  1168. store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
  1169. regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
  1170. }
  1171. else
  1172. regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
  1173. FXSAVE_MXCSR_ADDR (regs));
  1174. }
  1175. }
  1176. /* Similar to i387_collect_fxsave, but use XSAVE extended state. */
  1177. void
  1178. i387_collect_xsave (const struct regcache *regcache, int regnum,
  1179. void *xsave, int gcore)
  1180. {
  1181. struct gdbarch *gdbarch = regcache->arch ();
  1182. enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  1183. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
  1184. gdb_byte *p, *regs = (gdb_byte *) xsave;
  1185. gdb_byte raw[I386_MAX_REGISTER_SIZE];
  1186. ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0;
  1187. unsigned int i;
  1188. /* See the comment in i387_supply_xsave(). */
  1189. unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep)
  1190. + std::min (tdep->num_zmm_regs, 16);
  1191. enum
  1192. {
  1193. x87_ctrl_or_mxcsr = 0x1,
  1194. x87 = 0x2,
  1195. sse = 0x4,
  1196. avxh = 0x8,
  1197. mpx = 0x10,
  1198. avx512_k = 0x20,
  1199. avx512_zmm_h = 0x40,
  1200. avx512_ymmh_avx512 = 0x80,
  1201. avx512_xmm_avx512 = 0x100,
  1202. pkeys = 0x200,
  1203. all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h
  1204. | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
  1205. } regclass;
  1206. gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
  1207. gdb_assert (tdep->num_xmm_regs > 0);
  1208. if (regnum == -1)
  1209. regclass = all;
  1210. else if (regnum >= I387_PKRU_REGNUM (tdep)
  1211. && regnum < I387_PKEYSEND_REGNUM (tdep))
  1212. regclass = pkeys;
  1213. else if (regnum >= I387_ZMM0H_REGNUM (tdep)
  1214. && regnum < I387_ZMMENDH_REGNUM (tdep))
  1215. regclass = avx512_zmm_h;
  1216. else if (regnum >= I387_K0_REGNUM (tdep)
  1217. && regnum < I387_KEND_REGNUM (tdep))
  1218. regclass = avx512_k;
  1219. else if (regnum >= I387_YMM16H_REGNUM (tdep)
  1220. && regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
  1221. regclass = avx512_ymmh_avx512;
  1222. else if (regnum >= I387_XMM16_REGNUM (tdep)
  1223. && regnum < I387_XMM_AVX512_END_REGNUM (tdep))
  1224. regclass = avx512_xmm_avx512;
  1225. else if (regnum >= I387_YMM0H_REGNUM (tdep)
  1226. && regnum < I387_YMMENDH_REGNUM (tdep))
  1227. regclass = avxh;
  1228. else if (regnum >= I387_BND0R_REGNUM (tdep)
  1229. && regnum < I387_MPXEND_REGNUM (tdep))
  1230. regclass = mpx;
  1231. else if (regnum >= I387_XMM0_REGNUM (tdep)
  1232. && regnum < I387_MXCSR_REGNUM (tdep))
  1233. regclass = sse;
  1234. else if (regnum >= I387_ST0_REGNUM (tdep)
  1235. && regnum < I387_FCTRL_REGNUM (tdep))
  1236. regclass = x87;
  1237. else if ((regnum >= I387_FCTRL_REGNUM (tdep)
  1238. && regnum < I387_XMM0_REGNUM (tdep))
  1239. || regnum == I387_MXCSR_REGNUM (tdep))
  1240. regclass = x87_ctrl_or_mxcsr;
  1241. else
  1242. internal_error (__FILE__, __LINE__, _("invalid i387 regnum %d"), regnum);
  1243. if (gcore)
  1244. {
  1245. /* Clear XSAVE extended state. */
  1246. memset (regs, 0, X86_XSTATE_SIZE (tdep->xcr0));
  1247. /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */
  1248. if (tdep->xsave_xcr0_offset != -1)
  1249. memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8);
  1250. memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8);
  1251. }
  1252. /* The supported bits in `xstat_bv' are 8 bytes. */
  1253. initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
  1254. 8, byte_order);
  1255. clear_bv = (~(initial_xstate_bv)) & tdep->xcr0;
  1256. /* The XSAVE buffer was filled lazily by the kernel. Only those
  1257. features that are enabled were written into the buffer, disabled
  1258. features left the buffer uninitialised. In order to identify if any
  1259. registers have changed we will be comparing the register cache
  1260. version to the version in the XSAVE buffer, it is important then that
  1261. at this point we initialise to the default values any features in
  1262. XSAVE that are not yet initialised.
  1263. This could be made more efficient, we know which features (from
  1264. REGNUM) we will be potentially updating, and could limit ourselves to
  1265. only clearing that feature. However, the extra complexity does not
  1266. seem justified at this point. */
  1267. if (clear_bv)
  1268. {
  1269. if ((clear_bv & X86_XSTATE_PKRU))
  1270. for (i = I387_PKRU_REGNUM (tdep);
  1271. i < I387_PKEYSEND_REGNUM (tdep); i++)
  1272. memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4);
  1273. if ((clear_bv & X86_XSTATE_BNDREGS))
  1274. for (i = I387_BND0R_REGNUM (tdep);
  1275. i < I387_BNDCFGU_REGNUM (tdep); i++)
  1276. memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16);
  1277. if ((clear_bv & X86_XSTATE_BNDCFG))
  1278. for (i = I387_BNDCFGU_REGNUM (tdep);
  1279. i < I387_MPXEND_REGNUM (tdep); i++)
  1280. memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8);
  1281. if ((clear_bv & X86_XSTATE_ZMM_H))
  1282. for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
  1283. memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32);
  1284. if ((clear_bv & X86_XSTATE_K))
  1285. for (i = I387_K0_REGNUM (tdep);
  1286. i < I387_KEND_REGNUM (tdep); i++)
  1287. memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8);
  1288. if ((clear_bv & X86_XSTATE_ZMM))
  1289. {
  1290. for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++)
  1291. memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32);
  1292. for (i = I387_YMM16H_REGNUM (tdep);
  1293. i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
  1294. memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16);
  1295. for (i = I387_XMM16_REGNUM (tdep);
  1296. i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
  1297. memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16);
  1298. }
  1299. if ((clear_bv & X86_XSTATE_AVX))
  1300. for (i = I387_YMM0H_REGNUM (tdep);
  1301. i < I387_YMMENDH_REGNUM (tdep); i++)
  1302. memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16);
  1303. if ((clear_bv & X86_XSTATE_SSE))
  1304. for (i = I387_XMM0_REGNUM (tdep);
  1305. i < I387_MXCSR_REGNUM (tdep); i++)
  1306. memset (FXSAVE_ADDR (tdep, regs, i), 0, 16);
  1307. /* The mxcsr register is written into the xsave buffer if either AVX
  1308. or SSE is enabled, so only clear it if both of those features
  1309. require clearing. */
  1310. if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
  1311. == (X86_XSTATE_AVX | X86_XSTATE_SSE))
  1312. store_unsigned_integer (FXSAVE_MXCSR_ADDR (regs), 2, byte_order,
  1313. I387_MXCSR_INIT_VAL);
  1314. if ((clear_bv & X86_XSTATE_X87))
  1315. {
  1316. for (i = I387_ST0_REGNUM (tdep);
  1317. i < I387_FCTRL_REGNUM (tdep); i++)
  1318. memset (FXSAVE_ADDR (tdep, regs, i), 0, 10);
  1319. for (i = I387_FCTRL_REGNUM (tdep);
  1320. i < I387_XMM0_REGNUM (tdep); i++)
  1321. {
  1322. if (i == I387_FCTRL_REGNUM (tdep))
  1323. store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2,
  1324. byte_order, I387_FCTRL_INIT_VAL);
  1325. else
  1326. memset (FXSAVE_ADDR (tdep, regs, i), 0,
  1327. regcache_register_size (regcache, i));
  1328. }
  1329. }
  1330. }
  1331. if (regclass == all)
  1332. {
  1333. /* Check if any PKEYS registers are changed. */
  1334. if ((tdep->xcr0 & X86_XSTATE_PKRU))
  1335. for (i = I387_PKRU_REGNUM (tdep);
  1336. i < I387_PKEYSEND_REGNUM (tdep); i++)
  1337. {
  1338. regcache->raw_collect (i, raw);
  1339. p = XSAVE_PKEYS_ADDR (tdep, regs, i);
  1340. if (memcmp (raw, p, 4) != 0)
  1341. {
  1342. xstate_bv |= X86_XSTATE_PKRU;
  1343. memcpy (p, raw, 4);
  1344. }
  1345. }
  1346. /* Check if any ZMMH registers are changed. */
  1347. if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM)))
  1348. for (i = I387_ZMM0H_REGNUM (tdep);
  1349. i < I387_ZMMENDH_REGNUM (tdep); i++)
  1350. {
  1351. regcache->raw_collect (i, raw);
  1352. p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i);
  1353. if (memcmp (raw, p, 32) != 0)
  1354. {
  1355. xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM);
  1356. memcpy (p, raw, 32);
  1357. }
  1358. }
  1359. /* Check if any K registers are changed. */
  1360. if ((tdep->xcr0 & X86_XSTATE_K))
  1361. for (i = I387_K0_REGNUM (tdep);
  1362. i < I387_KEND_REGNUM (tdep); i++)
  1363. {
  1364. regcache->raw_collect (i, raw);
  1365. p = XSAVE_AVX512_K_ADDR (tdep, regs, i);
  1366. if (memcmp (raw, p, 8) != 0)
  1367. {
  1368. xstate_bv |= X86_XSTATE_K;
  1369. memcpy (p, raw, 8);
  1370. }
  1371. }
  1372. /* Check if any XMM or upper YMM registers are changed. */
  1373. if ((tdep->xcr0 & X86_XSTATE_ZMM))
  1374. {
  1375. for (i = I387_YMM16H_REGNUM (tdep);
  1376. i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
  1377. {
  1378. regcache->raw_collect (i, raw);
  1379. p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i);
  1380. if (memcmp (raw, p, 16) != 0)
  1381. {
  1382. xstate_bv |= X86_XSTATE_ZMM;
  1383. memcpy (p, raw, 16);
  1384. }
  1385. }
  1386. for (i = I387_XMM16_REGNUM (tdep);
  1387. i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
  1388. {
  1389. regcache->raw_collect (i, raw);
  1390. p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i);
  1391. if (memcmp (raw, p, 16) != 0)
  1392. {
  1393. xstate_bv |= X86_XSTATE_ZMM;
  1394. memcpy (p, raw, 16);
  1395. }
  1396. }
  1397. }
  1398. /* Check if any upper MPX registers are changed. */
  1399. if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
  1400. for (i = I387_BND0R_REGNUM (tdep);
  1401. i < I387_BNDCFGU_REGNUM (tdep); i++)
  1402. {
  1403. regcache->raw_collect (i, raw);
  1404. p = XSAVE_MPX_ADDR (tdep, regs, i);
  1405. if (memcmp (raw, p, 16))
  1406. {
  1407. xstate_bv |= X86_XSTATE_BNDREGS;
  1408. memcpy (p, raw, 16);
  1409. }
  1410. }
  1411. /* Check if any upper MPX registers are changed. */
  1412. if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
  1413. for (i = I387_BNDCFGU_REGNUM (tdep);
  1414. i < I387_MPXEND_REGNUM (tdep); i++)
  1415. {
  1416. regcache->raw_collect (i, raw);
  1417. p = XSAVE_MPX_ADDR (tdep, regs, i);
  1418. if (memcmp (raw, p, 8))
  1419. {
  1420. xstate_bv |= X86_XSTATE_BNDCFG;
  1421. memcpy (p, raw, 8);
  1422. }
  1423. }
  1424. /* Check if any upper YMM registers are changed. */
  1425. if ((tdep->xcr0 & X86_XSTATE_AVX))
  1426. for (i = I387_YMM0H_REGNUM (tdep);
  1427. i < I387_YMMENDH_REGNUM (tdep); i++)
  1428. {
  1429. regcache->raw_collect (i, raw);
  1430. p = XSAVE_AVXH_ADDR (tdep, regs, i);
  1431. if (memcmp (raw, p, 16))
  1432. {
  1433. xstate_bv |= X86_XSTATE_AVX;
  1434. memcpy (p, raw, 16);
  1435. }
  1436. }
  1437. /* Check if any SSE registers are changed. */
  1438. if ((tdep->xcr0 & X86_XSTATE_SSE))
  1439. for (i = I387_XMM0_REGNUM (tdep);
  1440. i < I387_MXCSR_REGNUM (tdep); i++)
  1441. {
  1442. regcache->raw_collect (i, raw);
  1443. p = FXSAVE_ADDR (tdep, regs, i);
  1444. if (memcmp (raw, p, 16))
  1445. {
  1446. xstate_bv |= X86_XSTATE_SSE;
  1447. memcpy (p, raw, 16);
  1448. }
  1449. }
  1450. if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE))
  1451. {
  1452. i = I387_MXCSR_REGNUM (tdep);
  1453. regcache->raw_collect (i, raw);
  1454. p = FXSAVE_MXCSR_ADDR (regs);
  1455. if (memcmp (raw, p, 4))
  1456. {
  1457. /* Now, we need to mark one of either SSE of AVX as enabled.
  1458. We could pick either. What we do is check to see if one
  1459. of the features is already enabled, if it is then we leave
  1460. it at that, otherwise we pick SSE. */
  1461. if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0)
  1462. xstate_bv |= X86_XSTATE_SSE;
  1463. memcpy (p, raw, 4);
  1464. }
  1465. }
  1466. /* Check if any X87 registers are changed. Only the non-control
  1467. registers are handled here, the control registers are all handled
  1468. later on in this function. */
  1469. if ((tdep->xcr0 & X86_XSTATE_X87))
  1470. for (i = I387_ST0_REGNUM (tdep);
  1471. i < I387_FCTRL_REGNUM (tdep); i++)
  1472. {
  1473. regcache->raw_collect (i, raw);
  1474. p = FXSAVE_ADDR (tdep, regs, i);
  1475. if (memcmp (raw, p, 10))
  1476. {
  1477. xstate_bv |= X86_XSTATE_X87;
  1478. memcpy (p, raw, 10);
  1479. }
  1480. }
  1481. }
  1482. else
  1483. {
  1484. /* Check if REGNUM is changed. */
  1485. regcache->raw_collect (regnum, raw);
  1486. switch (regclass)
  1487. {
  1488. default:
  1489. internal_error (__FILE__, __LINE__,
  1490. _("invalid i387 regclass"));
  1491. case pkeys:
  1492. /* This is a PKEYS register. */
  1493. p = XSAVE_PKEYS_ADDR (tdep, regs, regnum);
  1494. if (memcmp (raw, p, 4) != 0)
  1495. {
  1496. xstate_bv |= X86_XSTATE_PKRU;
  1497. memcpy (p, raw, 4);
  1498. }
  1499. break;
  1500. case avx512_zmm_h:
  1501. /* This is a ZMM register. */
  1502. p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum);
  1503. if (memcmp (raw, p, 32) != 0)
  1504. {
  1505. xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM);
  1506. memcpy (p, raw, 32);
  1507. }
  1508. break;
  1509. case avx512_k:
  1510. /* This is a AVX512 mask register. */
  1511. p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum);
  1512. if (memcmp (raw, p, 8) != 0)
  1513. {
  1514. xstate_bv |= X86_XSTATE_K;
  1515. memcpy (p, raw, 8);
  1516. }
  1517. break;
  1518. case avx512_ymmh_avx512:
  1519. /* This is an upper YMM16-31 register. */
  1520. p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum);
  1521. if (memcmp (raw, p, 16) != 0)
  1522. {
  1523. xstate_bv |= X86_XSTATE_ZMM;
  1524. memcpy (p, raw, 16);
  1525. }
  1526. break;
  1527. case avx512_xmm_avx512:
  1528. /* This is an upper XMM16-31 register. */
  1529. p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum);
  1530. if (memcmp (raw, p, 16) != 0)
  1531. {
  1532. xstate_bv |= X86_XSTATE_ZMM;
  1533. memcpy (p, raw, 16);
  1534. }
  1535. break;
  1536. case avxh:
  1537. /* This is an upper YMM register. */
  1538. p = XSAVE_AVXH_ADDR (tdep, regs, regnum);
  1539. if (memcmp (raw, p, 16))
  1540. {
  1541. xstate_bv |= X86_XSTATE_AVX;
  1542. memcpy (p, raw, 16);
  1543. }
  1544. break;
  1545. case mpx:
  1546. if (regnum < I387_BNDCFGU_REGNUM (tdep))
  1547. {
  1548. regcache->raw_collect (regnum, raw);
  1549. p = XSAVE_MPX_ADDR (tdep, regs, regnum);
  1550. if (memcmp (raw, p, 16))
  1551. {
  1552. xstate_bv |= X86_XSTATE_BNDREGS;
  1553. memcpy (p, raw, 16);
  1554. }
  1555. }
  1556. else
  1557. {
  1558. p = XSAVE_MPX_ADDR (tdep, regs, regnum);
  1559. xstate_bv |= X86_XSTATE_BNDCFG;
  1560. memcpy (p, raw, 8);
  1561. }
  1562. break;
  1563. case sse:
  1564. /* This is an SSE register. */
  1565. p = FXSAVE_ADDR (tdep, regs, regnum);
  1566. if (memcmp (raw, p, 16))
  1567. {
  1568. xstate_bv |= X86_XSTATE_SSE;
  1569. memcpy (p, raw, 16);
  1570. }
  1571. break;
  1572. case x87:
  1573. /* This is an x87 register. */
  1574. p = FXSAVE_ADDR (tdep, regs, regnum);
  1575. if (memcmp (raw, p, 10))
  1576. {
  1577. xstate_bv |= X86_XSTATE_X87;
  1578. memcpy (p, raw, 10);
  1579. }
  1580. break;
  1581. case x87_ctrl_or_mxcsr:
  1582. /* We only handle MXCSR here. All other x87 control registers
  1583. are handled separately below. */
  1584. if (regnum == I387_MXCSR_REGNUM (tdep))
  1585. {
  1586. p = FXSAVE_MXCSR_ADDR (regs);
  1587. if (memcmp (raw, p, 2))
  1588. {
  1589. /* We're only setting MXCSR, so check the initial state
  1590. to see if either of AVX or SSE are already enabled.
  1591. If they are then we'll attribute this changed MXCSR to
  1592. that feature. If neither feature is enabled, then
  1593. we'll attribute this change to the SSE feature. */
  1594. xstate_bv |= (initial_xstate_bv
  1595. & (X86_XSTATE_AVX | X86_XSTATE_SSE));
  1596. if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0)
  1597. xstate_bv |= X86_XSTATE_SSE;
  1598. memcpy (p, raw, 2);
  1599. }
  1600. }
  1601. }
  1602. }
  1603. /* Only handle x87 control registers. */
  1604. for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
  1605. if (regnum == -1 || regnum == i)
  1606. {
  1607. /* Most of the FPU control registers occupy only 16 bits in
  1608. the xsave extended state. Give those a special treatment. */
  1609. if (i != I387_FIOFF_REGNUM (tdep)
  1610. && i != I387_FOOFF_REGNUM (tdep))
  1611. {
  1612. gdb_byte buf[4];
  1613. regcache->raw_collect (i, buf);
  1614. if (i == I387_FOP_REGNUM (tdep))
  1615. {
  1616. /* The opcode occupies only 11 bits. Make sure we
  1617. don't touch the other bits. */
  1618. buf[1] &= ((1 << 3) - 1);
  1619. buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
  1620. }
  1621. else if (i == I387_FTAG_REGNUM (tdep))
  1622. {
  1623. /* Converting back is much easier. */
  1624. unsigned short ftag;
  1625. int fpreg;
  1626. ftag = (buf[1] << 8) | buf[0];
  1627. buf[0] = 0;
  1628. buf[1] = 0;
  1629. for (fpreg = 7; fpreg >= 0; fpreg--)
  1630. {
  1631. int tag = (ftag >> (fpreg * 2)) & 3;
  1632. if (tag != 3)
  1633. buf[0] |= (1 << fpreg);
  1634. }
  1635. }
  1636. p = FXSAVE_ADDR (tdep, regs, i);
  1637. if (memcmp (p, buf, 2))
  1638. {
  1639. xstate_bv |= X86_XSTATE_X87;
  1640. memcpy (p, buf, 2);
  1641. }
  1642. }
  1643. else
  1644. {
  1645. int regsize;
  1646. regcache->raw_collect (i, raw);
  1647. regsize = regcache_register_size (regcache, i);
  1648. p = FXSAVE_ADDR (tdep, regs, i);
  1649. if (memcmp (raw, p, regsize))
  1650. {
  1651. xstate_bv |= X86_XSTATE_X87;
  1652. memcpy (p, raw, regsize);
  1653. }
  1654. }
  1655. }
  1656. /* Update the corresponding bits in `xstate_bv' if any
  1657. registers are changed. */
  1658. if (xstate_bv)
  1659. {
  1660. /* The supported bits in `xstat_bv' are 8 bytes. */
  1661. initial_xstate_bv |= xstate_bv;
  1662. store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
  1663. 8, byte_order,
  1664. initial_xstate_bv);
  1665. }
  1666. }
  1667. /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
  1668. *RAW. */
  1669. static int
  1670. i387_tag (const gdb_byte *raw)
  1671. {
  1672. int integer;
  1673. unsigned int exponent;
  1674. unsigned long fraction[2];
  1675. integer = raw[7] & 0x80;
  1676. exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
  1677. fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
  1678. fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
  1679. | (raw[5] << 8) | raw[4]);
  1680. if (exponent == 0x7fff)
  1681. {
  1682. /* Special. */
  1683. return (2);
  1684. }
  1685. else if (exponent == 0x0000)
  1686. {
  1687. if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
  1688. {
  1689. /* Zero. */
  1690. return (1);
  1691. }
  1692. else
  1693. {
  1694. /* Special. */
  1695. return (2);
  1696. }
  1697. }
  1698. else
  1699. {
  1700. if (integer)
  1701. {
  1702. /* Valid. */
  1703. return (0);
  1704. }
  1705. else
  1706. {
  1707. /* Special. */
  1708. return (2);
  1709. }
  1710. }
  1711. }
  1712. /* Prepare the FPU stack in REGCACHE for a function return. */
  1713. void
  1714. i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
  1715. {
  1716. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
  1717. ULONGEST fstat;
  1718. /* Set the top of the floating-point register stack to 7. The
  1719. actual value doesn't really matter, but 7 is what a normal
  1720. function return would end up with if the program started out with
  1721. a freshly initialized FPU. */
  1722. regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
  1723. fstat |= (7 << 11);
  1724. regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
  1725. /* Mark %st(1) through %st(7) as empty. Since we set the top of the
  1726. floating-point register stack to 7, the appropriate value for the
  1727. tag word is 0x3fff. */
  1728. regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
  1729. }
  1730. /* See i387-tdep.h. */
  1731. void
  1732. i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache)
  1733. {
  1734. i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
  1735. if (I387_BND0R_REGNUM (tdep) > 0)
  1736. {
  1737. gdb_byte bnd_buf[16];
  1738. memset (bnd_buf, 0, 16);
  1739. for (int i = 0; i < I387_NUM_BND_REGS; i++)
  1740. regcache->raw_write (I387_BND0R_REGNUM (tdep) + i, bnd_buf);
  1741. }
  1742. }